We consider the problem of model selection for the general stochastic contextual bandits under the realizability assumption. We propose a successive refinement based algorithm called Adaptive Contextual Bandit ({\ttfamily ACB}), that works in phases and successively eliminates model classes that are too simple to fit the given instance. We prove that this algorithm is adaptive, i.e., the regret rate order-wise matches that of {\ttfamily FALCON}, the state-of-art contextual bandit algorithm of Levi et. al '20, that needs knowledge of the true model class. The price of not knowing the correct model class is only an additive term contributing to the second order term in the regret bound. This cost possess the intuitive property that it becomes smaller as the model class becomes easier to identify, and vice-versa. We then show that a much simpler explore-then-commit (ETC) style algorithm also obtains a regret rate of matching that of {\ttfamily FALCON}, despite not knowing the true model class. However, the cost of model selection is higher in ETC as opposed to in {\ttfamily ACB}, as expected. Furthermore, {\ttfamily ACB} applied to the linear bandit setting with unknown sparsity, order-wise recovers the model selection guarantees previously established by algorithms tailored to the linear setting.


翻译:我们根据可变性假设考虑通用随机背景强盗的模型选择问题。 我们提出一个连续的精细算法,名为“适应性背景强盗”(Ttfrical ACB}),该算法是分阶段运作的,并连续消除过于简单、不适合特定实例的模型类。我们证明,这一算法是适应性的,即遗憾率顺序与当时FALCON}(Tttfamily FALCON})相匹配,需要了解真实模型类知识的Levi et al '20的最新背景强盗算法。但是,不知道正确模型类的代谢价格只是一个添加术语,只是对后悔约束的第二个顺序期的附加术语。这一成本具有随着模型类更容易识别而变小的直观属性。 然后我们证明,一个简单得多的探索(ETC)风格算法(ETC)也获得了一种遗憾率,即尽管不知道真正的模型类。 然而,在ETC选择模型时的成本比在前一连程选择A-Climal Climal A-CR 设置的回收期要高。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
161+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Arxiv
0+阅读 · 2021年9月10日
Adaptive Neural Trees
Arxiv
4+阅读 · 2018年12月10日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
161+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员