This is the second and final article on the tutorial on manipulator differential kinematics. In Part I, we described a method of modelling kinematics using the elementary transform sequence (ETS), before formulating forward kinematics and the manipulator Jacobian. We then described some basic applications of the manipulator Jacobian including resolved-rate motion control (RRMC), inverse kinematics (IK), and some manipulator performance measures. In this article, we formulate the second-order differential kinematics, leading to a definition of manipulator Hessian. We then describe the differential kinematics' analytical forms, which are essential to dynamics applications. Subsequently, we provide a general formula for higher-order derivatives. The first application we consider is advanced velocity control. In this section, we extend resolved-rate motion control to perform sub-tasks while still achieving the goal before redefining the algorithm as a quadratic program to enable greater flexibility and additional constraints. We then take another look at numerical inverse kinematics with an emphasis on adding constraints. Finally, we analyse how the manipulator Hessian can help to escape singularities. We have provided Jupyter Notebooks to accompany each section within this tutorial. The Notebooks are written in Python code and use the Robotics Toolbox for Python, and the Swift Simulator to provide examples and implementations of algorithms. While not absolutely essential, for the most engaging and informative experience, we recommend working through the Jupyter Notebooks while reading this article. The Notebooks and setup instructions can be accessed at https://github.com/jhavl/dkt.
翻译:这是关于操控差异运动学的第二也是最后一篇文章。 在第一部分, 我们描述了使用基本变换序列( ETS) 模拟运动学的方法。 我们随后描述了使用基本变换序列( ETS) 模拟运动学的方法, 之前先是制作远端运动和操控者雅各布安。 我们然后描述了操纵者雅各布安( Jacobian) 的一些基本应用, 包括解析运动控制( RRMC) 、反动运动学( IK) 和一些操控性能措施。 在此篇文章中, 我们设计了第二阶级差异运动学, 导致对操纵者 Hessssian 进行定义。 我们然后描述不同的运动学分析形式, 而这些形式对于动态应用是绝对的。 我们随后为更高级的电算学衍生器提供了一种一般公式。 我们把解析运动控制范围扩大到执行子任务, 同时在重新定义算法程序之前, 以允许更大的灵活性和额外的限制。 我们再查看数字性运动学, 重点是添加限制 。 最后, 我们分析如何在每次调控控控控动和调中, 正在操作者/ 正在操作的系统操作中, 正在运行中, 正在运行中, 正在运行中, 正在运行中, 我们提供了每个调的纸质调调的纸质调 。