Graph Neural Networks (GNNs) have been widely used to learn node representations and with outstanding performance on various tasks such as node classification. However, noise, which inevitably exists in real-world graph data, would considerably degrade the performance of GNNs as the noise is easily propagated via the graph structure. In this work, we propose a novel and robust method, Bayesian Robust Graph Contrastive Learning (BRGCL), which trains a GNN encoder to learn robust node representations. The BRGCL encoder is a completely unsupervised encoder. Two steps are iteratively executed at each epoch of training the BRGCL encoder: (1) estimating confident nodes and computing robust cluster prototypes of node representations through a novel Bayesian nonparametric method; (2) prototypical contrastive learning between the node representations and the robust cluster prototypes. Experiments on public and large-scale benchmarks demonstrate the superior performance of BRGCL and the robustness of the learned node representations. The code of BRGCL is available at \url{https://github.com/BRGCL-code/BRGCL-code}.


翻译:神经网络(GNNs)被广泛用于学习节点表达方式,在节点分类等各种任务上表现突出,但是,噪音(在现实世界图形数据中不可避免地存在)会大大降低GNN的性能,因为噪音很容易通过图形结构传播。在这项工作中,我们提出了一个创新而有力的方法,即Bayesian Robust 图表对比学习(BRGCL),它训练GN 编码器学习稳健的节点表达方式。BRGCL 编码器是一个完全不受监督的编码器。在BRGCL 编码器培训的每一个阶段,都会反复执行两个步骤:(1) 通过一种新型的Bayesian非参数方法,估计自信的节点和计算结点表示的稳健的集群原型;(2) 节点表达方式和强健健的集原型之间的准的对比学习。对公共基准和大型基准的实验显示了BRGCL的优异性表现和所学的节点表达方式。BRGCL的代码可以在urlas/gihubbub.BRGC/BRGC/BRGC/codecodecodegy。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2021年10月22日
Arxiv
31+阅读 · 2020年9月21日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Arxiv
17+阅读 · 2019年3月28日
Deep Graph Infomax
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
23+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2021年10月22日
Arxiv
31+阅读 · 2020年9月21日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Arxiv
17+阅读 · 2019年3月28日
Deep Graph Infomax
Arxiv
17+阅读 · 2018年12月21日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员