The COVID-19 pandemic has been a recent example for the spread of a harmful contagion in large populations. Moreover, the spread of harmful contagions is not only restricted to an infectious disease, but is also relevant to computer viruses and malware in computer networks. Furthermore, the spread of fake news and propaganda in online social networks is also of major concern. In this study, we introduce the measure-based spread minimization problem (MBSMP), which can help policy makers in minimizing the spread of harmful contagions in large networks. We develop exact solution methods based on branch-and-Benders-cut algorithms that make use of the application of Benders decomposition method to two different mixed-integer programming formulations of the MBSMP: an arc-based formulation and a path-based formulation. We show that for both formulations the Benders optimality cuts can be generated using a combinatorial procedure rather than solving the dual subproblems using linear programming. Additional improvements such as using scenario-dependent extended seed sets, initial cuts, and a starting heuristic are also incorporated into our branch-and-Benders-cut algorithms. We investigate the contribution of various components of the solution algorithms to the performance on the basis of computational results obtained on a set of instances derived from existing ones in the literature.


翻译:COVID-19疫情是大规模人群中有害疾病传播的最近例子。此外,有害传染的扩散不仅限于传染性疾病,而且涉及计算机网络中的计算机病毒和恶意软件。此外,在在线社交网络中传播假新闻和宣传也是一个重要问题。在本研究中,我们介绍了基于度量的最小化传播问题(MBSMP),它可以帮助政策制定者最小化大型网络中的有害传染的扩散。我们基于Benders分解方法开发了精确解决方案方法,这种方法使用两种不同的混合整数规划公式对MBSMP进行建模:一种是基于弧的公式,另一种是基于路径的公式。我们表明,对于两种公式,Benders最优性割可以使用组合程序而不是使用线性规划求解双重子问题来生成。我们还将其他改进引入到我们的分支和Benders割算法中,例如使用情景相关的扩展种子集、初始割和启发式算法。我们根据从文献中获得的一组实例所得到的计算结果,调查了解决方案算法各个组成部分对性能的贡献。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
28+阅读 · 2022年12月26日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月11日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关VIP内容
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
28+阅读 · 2022年12月26日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员