We present a well-posed ultra-weak space-time variational formulation for the time-dependent version of the linear Schr\"odinger equation with an instationary Hamiltonian. We prove optimal inf-sup stability and introduce a space-time Petrov-Galerkin discretization with optimal discrete inf-sup stability. We show norm-preservation of the ultra-weak formulation. The inf-sup optimal Petrov-Galerkin discretization is shown to be asymptotically norm-preserving, where the deviation is shown to be in the order of the discretization. In addition, we introduce a Galerkin discretization, which has suboptimal inf-sup stability but exact norm-preservation. Numerical experiments underline the performance of the ultra-weak space-time variational formulation, especially for non-smooth initial data.
翻译:我们用静态汉密尔顿语为线性Schr\'odinger方程式的具有时间依赖性的方程式提供了一种备有的超弱时空变换配方。我们证明是最佳的内向稳定,并采用时Petrov-Galerkin离散,且有最佳离散的内向稳定。我们展示了超弱方程式的规范保护。内向最佳的Petrov-Galerkin分解配方显示是静态规范保护,显示偏向与离异的相近。此外,我们引入了加勒金分解,它具有亚优性内向内向稳定,但有精确的规范保护。数字实验突出了超弱空间-时变配方的性能,特别是非摩擦初始数据的性能。