In this paper, we show that the difference in $l_2$ norms of sample features can hinder batch normalization from obtaining more distinguished inter-class features and more compact intra-class features. To address this issue, we propose an intuitive but effective method to equalize the $l_2$ norms of sample features. Concretely, we $l_2$-normalize each sample feature before feeding them into batch normalization, and therefore the features are of the same magnitude. Since the proposed method combines the $l_2$ normalization and batch normalization, we name our method $L_2$BN. The $L_2$BN can strengthen the compactness of intra-class features and enlarge the discrepancy of inter-class features. The $L_2$BN is easy to implement and can exert its effect without any additional parameters or hyper-parameters. Therefore, it can be used as a basic normalization method for neural networks. We evaluate the effectiveness of $L_2$BN through extensive experiments with various models on image classification and acoustic scene classification tasks. The results demonstrate that the $L_2$BN can boost the generalization ability of various neural network models and achieve considerable performance improvements.
翻译:在本文中,我们表明,抽样特征1美元2美元的规范差异会妨碍批量正常化,使其无法取得更显著的类别间特征和更紧凑的类别内特征。为解决这一问题,我们建议了一种直观但有效的方法,以平衡样本特征的1美元2美元的规范。具体地说,我们在将每个样本特征纳入批量正常化之前,先将每个样本特征标准化1美元2美元,因此这些特征也具有同等规模。由于拟议的方法将1美元2美元的规范化和批量正常化结合起来,我们命名了我们的方法2美元BN。$2BN可以加强分类内部特征的紧凑性,扩大分类特征的差异。$2BN很容易实施,并且可以在没有任何额外参数或超参数的情况下发挥其效力。因此,它可以用作神经网络的基本正常化方法。我们通过在图像分类和声学场分类任务方面的各种模型进行的广泛实验,评估了2美元2美元BN的效益。结果表明,$L2BN能够提高各种星际网络的通用能力,并实现相当大的改进。