Road object detection is an important branch of automatic driving technology, The model with higher detection accuracy is more conducive to the safe driving of vehicles. In road object detection, the omission of small objects and occluded objects is an important problem. therefore, reducing the missed rate of the object is of great significance for safe driving. In the work of this paper, based on the YOLOX object detection algorithm to improve, proposes DecIoU boundary box regression loss function to improve the shape consistency of the predicted and real box, and Push Loss is introduced to further optimize the boundary box regression loss function, in order to detect more occluded objects. In addition, the dynamic anchor box mechanism is also used to improve the accuracy of the confidence label, improve the label inaccuracy of object detection model without anchor box. A large number of experiments on KITTI dataset demonstrate the effectiveness of the proposed method, the improved YOLOX-s achieved 88.9% mAP and 91.0% mAR on the KITTI dataset, compared to the baseline version improvements of 2.77% and 4.24%; the improved YOLOX-m achieved 89.1% mAP and 91.4% mAR, compared to the baseline version improvements of 2.30% and 4.10%.


翻译:道路物体探测是自动驾驶技术的一个重要分支; 探测精确度较高的模型更有利于车辆的安全驾驶。 在道路物体探测中,小物体和隐蔽物体的遗漏是一个重要问题。 因此,降低天体误差率对于安全驾驶非常重要。 在本文件的工作中,根据YOLOX天体探测算法进行改进,提议DEIoU边界框回归损失功能,以提高预测和真实盒的形状一致性; 采用推力损失模型,以进一步优化边界框回归损失功能,从而发现更多隐蔽物体。 此外,动态锚箱机制还用来提高信任标签的准确性,改进没有锚框的物体探测模型的不准确性。 KITTI 数据集的大量实验表明拟议方法的有效性,改进后的YOLOX-s在KITTI数据集上实现了88.9% mAP和91.0% mAR,而基准版本改进了2.77%和4.24 %; 改进后的YOLOX-m改进了YOLOX-MRAN%的基线,将YOLOX-RAN%改为0.1%的基线。

0
下载
关闭预览

相关内容

目标检测,也叫目标提取,是一种与计算机视觉和图像处理有关的计算机技术,用于检测数字图像和视频中特定类别的语义对象(例如人,建筑物或汽车)的实例。深入研究的对象检测领域包括面部检测和行人检测。 对象检测在计算机视觉的许多领域都有应用,包括图像检索和视频监视。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月5日
Arxiv
0+阅读 · 2023年4月4日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员