Generalized Additive Runge-Kutta schemes have shown to be a suitable tool for solving ordinary differential equations with additively partitioned right-hand sides. This work generalizes these GARK schemes to symplectic GARK schemes for additively partitioned Hamiltonian systems. In a general setting, we derive conditions for symplecticeness, as well as symmetry and time-reversibility. We show how symplectic and symmetric schemes can be constructed based on schemes which are only symplectic. Special attention is given to the special case of partitioned schemes for Hamiltonians split into multiple potential and kinetic energies. Finally we show how symplectic GARK schemes can use efficiently different time scales and evaluation costs for different potentials by using different order for these parts.
翻译:普通的安倍增龙格-库塔计划已经证明是解决普通差异方程式的合适工具,其右侧有累加分割法。 这项工作将这些GARK计划概括为对加倍分割汉密尔顿系统有共振的GARK计划。 在一般情况下,我们为共振以及对称和时间可逆性提出条件。 我们展示了如何根据仅具有共振性的计划来构建中位和对称计划。 特别注意了汉密尔顿人分成成多种潜力和动能的分隔计划的特殊案例。 最后,我们展示了共振的GARK计划如何通过对这些部分使用不同顺序来高效地使用不同的时间尺度和不同潜力的评估成本。