We perform a numerical analysis of a class of randomly perturbed {H}amiltonian systems and {P}oisson systems. For the considered additive noise perturbation of such systems, we show the long time behavior of the energy and quadratic Casimirs for the exact solution. We then propose and analyze a drift-preserving splitting scheme for such problems with the following properties: exact drift preservation of energy and quadratic Casimirs, mean-square order of convergence one, weak order of convergence two. These properties are illustrated with numerical experiments.
翻译:我们对随机扰动的 {H}amiltonian 系统和 {P}oisson 系统进行数字分析。对于这些系统经过考虑的添加性噪音扰动,我们展示了能量和二次二次叠加器对于确切解决方案的长期行为。然后我们提出并分析一种针对这些问题的漂移式分离计划,其特性如下: 能量和二次叠加器的精确漂移式保存和二次叠加器, 平均汇合顺序之一, 微弱的汇合顺序二。这些特性用数字实验来说明。