Split form schemes for Euler and Navier-Stokes equations are useful for computation of turbulent flows due to their better robustness. This is because they satisfy additional conservation properties of the governing equations like kinetic energy preservation leading to a reduction in aliasing errors at high orders. Recently, linear stability issues have been pointed out for these schemes for a density wave problem and we investigate this behaviour for some standard split forms. By deriving linearized equations of split form schemes, we show that most existing schemes do not satisfy a perturbation energy equation that holds at the continuous level. A simple modification to the energy flux of some existing schemes is shown to yield a scheme that is consistent with the energy perturbation equation. Numerical tests are given using a discontinuous Galerkin method to demonstrate these results.
翻译:Euler 和 Navier- Stokes 等方程式的分解形式方案对计算动荡流很有用,因为它们更稳健。 这是因为它们满足了支配方程式的额外保护特性, 如动能保护, 导致高压别名错误的减少。 最近, 已经指出了这些密度波问题方案的线性稳定性问题, 我们用一些标准分解形式来调查这种行为。 我们从分解形式方案的线性方程式中推导出线性方程式, 我们显示大多数现有方案没有满足持续水平的扰动能量方程式。 一些现有方案对能量通量的简单修改显示产生一个与能量扰动方程式相一致的公式。 使用不连续的Galerkin 方法进行数值测试以证明这些结果。