The magnetohydrodynamics (MHD) equations are generally known to be difficult to solve numerically, due to their highly nonlinear structure and the strong coupling between the electromagnetic and hydrodynamic variables, especially for high Reynolds and coupling numbers. In this work, we present a scalable augmented Lagrangian preconditioner for a finite element discretization of the $\mathbf{B}$-$\mathbf{E}$ formulation of the incompressible viscoresistive MHD equations. For stationary problems, our solver achieves robust performance with respect to the Reynolds and coupling numbers in two dimensions and good results in three dimensions. We extend our method to fully implicit methods for time-dependent problems which we solve robustly in both two and three dimensions. Our approach relies on specialized parameter-robust multigrid methods for the hydrodynamic and electromagnetic blocks. The scheme ensures exactly divergence-free approximations of both the velocity and the magnetic field up to solver tolerances. We confirm the robustness of our solver by numerical experiments in which we consider fluid and magnetic Reynolds numbers and coupling numbers up to 10,000 for stationary problems and up to 100,000 for transient problems in two and three dimensions.
翻译:众所周知,磁流动力学(MHD)方程式难以在数字上解决,因为其高度非线性结构,以及电磁和流体动力变量之间,特别是高Reynolds和混合数字的电磁和流体动力变异变变变变的强烈结合。在这项工作中,我们提出了一个可缩放的拉格朗格亚附加先决条件器,用于一个有限的元素分解 $\ mathbf{B}}$-$\mathbf{E}方程式,用于制成不压缩的压实性压实性负式MHD方程式。对于固定问题,我们的解答器在Reynolds和两个维度的合并数字和三个维度的良好结果上取得了强大的性能。我们扩展了我们的方法,以完全隐含的方法解决在两个维度上的问题,我们在两个维度上考虑流体和磁力变异性Reynz的数值以及10万个空间问题和10万个位数之间的数字。