State-of-the-art deep neural networks are still struggling to address the catastrophic forgetting problem in continual learning. In this paper, we propose one simple paradigm (named as S-Prompting) and two concrete approaches to highly reduce the forgetting degree in one of the most typical continual learning scenarios, i.e., domain increment learning (DIL). The key idea of the paradigm is to learn prompts independently across domains with pre-trained transformers, avoiding the use of exemplars that commonly appear in conventional methods. This results in a win-win game where the prompting can achieve the best for each domain. The independent prompting across domains only requests one single cross-entropy loss for training and one simple K-NN operation as a domain identifier for inference. The learning paradigm derives an image prompt learning approach and a brand-new language-image prompt learning approach. Owning an excellent scalability (0.03% parameter increase per domain), the best of our approaches achieves a remarkable relative improvement (an average of about 30%) over the best of the state-of-the-art exemplar-free methods for three standard DIL tasks, and even surpasses the best of them relatively by about 6% in average when they use exemplars.
翻译:最先进的深层神经神经网络仍在努力解决持续学习中的灾难性遗忘问题。 在本文中,我们提出一个简单范例(名为S-Prompting)和两个具体方法,以大幅降低最典型的持续学习情景之一(即域级递增学习(DIL))中的忘却程度。 模式的关键理念是,与培训前变压器一起,在不同领域独立学习,避免使用通常以传统方法出现的外观模型。这导致双赢游戏,即快速推进能为每个领域取得最佳效果。 独立的跨域闪烁只要求为培训提供单一的跨翼损失,而将一个简单的K-NNN操作作为猜测的域标识符。 学习范式提供了一种形象快速学习方法和品牌新语言模拟快速学习方法。 拥有极好的可缩放性( 每域增加0.03%的参数),我们的最佳方法在三个标准 DIL 任务中超越了它们最先进的六等无限制方法,甚至超过它们的平均六分位最佳方法。