Variational quantum algorithms rely on gradient based optimization to iteratively minimize a cost function evaluated by measuring output(s) of a quantum processor. A barren plateau is the phenomenon of exponentially vanishing gradients in sufficiently expressive parametrized quantum circuits. It has been established that the onset of a barren plateau regime depends on the cost function, although the particular behavior has been demonstrated only for certain classes of cost functions. Here we derive a lower bound on the variance of the gradient, which depends mainly on the width of the circuit causal cone of each term in the Pauli decomposition of the cost function. Our result further clarifies the conditions under which barren plateaus can occur.


翻译:变化量算法依赖于基于梯度的优化,以便迭代地将测量量子处理器输出量所评估的成本功能降到最低。贫瘠高原是指在足够直观的准美化量子电路中指数性地消失梯度的现象。已经确定,不毛高原制度的开始取决于成本功能,尽管该特定行为只表现为某些类别的成本功能。这里我们从梯度差异中得出了一个较低的界限,该梯度主要取决于Pauli成本函数分解中每个术语的电路因锥的宽度。我们的结果进一步澄清了不毛高原发生的条件。

0
下载
关闭预览

相关内容

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学中,代价函数,又叫损失函数或成本函数,它是将一个或多个变量的事件阈值映射到直观地表示与该事件。 一个优化问题试图最小化损失函数。 目标函数是损失函数或其负值,在这种情况下它将被最大化。
专知会员服务
54+阅读 · 2020年11月3日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
36+阅读 · 2020年4月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年1月12日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关VIP内容
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员