Topology optimization problems often support multiple local minima due to a lack of convexity. Typically, gradient-based techniques combined with continuation in model parameters are used to promote convergence to more optimal solutions; however, these methods can fail even in the simplest cases. In this paper, we present an algorithm to perform a systematic exploratory search for the solutions of the optimization problem via second-order methods without a good initial guess. The algorithm combines the techniques of deflation, barrier methods and primal-dual active set solvers in a novel way. We demonstrate this approach on several numerical examples, observe mesh-independence in certain cases and show that multiple distinct local minima can be recovered.
翻译:地形优化问题往往由于缺乏精细性而支持多种本地小型工程。 通常,以梯度为基础的技术,再加上模型参数的延续,都被用来促进趋同于更理想的解决办法;然而,这些方法即使在最简单的情况下也可能失败。在本文中,我们提出了一个算法,通过二阶方法进行系统的探索性研究,寻找优化问题的解决方案,而没有良好的初步猜测。算法将通缩、屏障方法和初等双向活跃成套解决方案技术以新的方式结合起来。我们在若干数字实例中展示了这一方法,在某些情况下观察网状独立,并表明可以找到多种不同的本地小型工程。