Fidelity is one of the most widely used quantities in quantum information that measure the distance of quantum states through a noisy channel. In this paper, we introduce a quantum analogy of computation tree logic (CTL) called QCTL, which concerns fidelity instead of probability in probabilistic CTL, over quantum Markov chains (QMCs). Noisy channels are modelled by super-operators, which are specified by QCTL formulas; the initial quantum states are modelled by density operators, which are left parametric in the given QMC. The problem is to compute the minimumfidelity over all initial states for conservation. We achieve it by a reduction to quantifier elimination in the existential theory of the reals. The method is absolutely exact, so that QCTL formulas are proven to be decidable in exponential time. Finally, we implement the proposed method and demonstrate its effectiveness via a quantum IPv4 protocol.
翻译:Fildity 是量子信息中最广泛使用的数量量量信息之一, 测量量子状态通过一个吵闹的频道的距离。 在本文中, 我们引入了一个计算树逻辑( CTL) 的量子类比 QCTL, 它涉及对准概率 CTL 的概率, 而不是对量子 Markov 链( QMCs ) 的概率。 吵闹的渠道是由超级操作器模拟的, 由 QCTL 公式来指定; 初始量子状态由密度操作器模拟, 这些操作器在给定的 QMC 中留有参数。 问题在于对所有初始状态的最小度进行计算。 我们通过减少对真实值存在理论的量化来达到这个量。 这种方法绝对精确, 因此QCTL 公式在指数时间可以被证明为可衰减 。 最后, 我们通过量 IPv4 协议 来实施拟议的方法并展示其有效性 。