A natural problem in high-dimensional inference is to decide if a classifier $f:\mathbb{R}^n \rightarrow \{-1,1\}$ depends on a small number of linear directions of its input data. Call a function $g: \mathbb{R}^n \rightarrow \{-1,1\}$, a linear $k$-junta if it is completely determined by some $k$-dimensional subspace of the input space. A recent work of the authors showed that linear $k$-juntas are testable. Thus there exists an algorithm to distinguish between: 1. $f: \mathbb{R}^n \rightarrow \{-1,1\}$ which is a linear $k$-junta with surface area $s$, 2. $f$ is $\epsilon$-far from any linear $k$-junta with surface area $(1+\epsilon)s$, where the query complexity of the algorithm is independent of the ambient dimension $n$. Following the surge of interest in noise-tolerant property testing, in this paper we prove a noise-tolerant (or robust) version of this result. Namely, we give an algorithm which given any $c>0$, $\epsilon>0$, distinguishes between 1. $f: \mathbb{R}^n \rightarrow \{-1,1\}$ has correlation at least $c$ with some linear $k$-junta with surface area $s$. 2. $f$ has correlation at most $c-\epsilon$ with any linear $k$-junta with surface area at most $s$. The query complexity of our tester is $k^{\mathsf{poly}(s/\epsilon)}$. Using our techniques, we also obtain a fully noise tolerant tester with the same query complexity for any class $\mathcal{C}$ of linear $k$-juntas with surface area bounded by $s$. As a consequence, we obtain a fully noise tolerant tester with query complexity $k^{O(\mathsf{poly}(\log k/\epsilon))}$ for the class of intersection of $k$-halfspaces (for constant $k$) over the Gaussian space. Our query complexity is independent of the ambient dimension $n$. Previously, no non-trivial noise tolerant testers were known even for a single halfspace.
翻译:高维度亚空间的自然问题在于确定一个分类 $f:\ mathb{R ⁇ n\right $美元 =1,1 ⁇ $ 取决于其输入数据的少量线性方向。调用一个函数 $g:\ mathb{R ⁇ n\rightrow =1,1 ⁇ 美元,如果输入空间的某个 $(k美元) 的子空间完全确定为线性美元美元 。最近作者们的工作显示,直线 $(k美元) 的情况是可测试的。因此有一种算法可以区分:1 美元:\ mathb{right $(rightrow =1,1美元) 直线性方向 $ (k) 美元 美元 美元 。 在纸上,直线性 美元 美元 美元 值是任何直线性的 美元 美元 。