This paper considers the problem of planning trajectories for a team of sensor-equipped robots to reduce uncertainty about a dynamical process. Optimizing the trade-off between information gain and energy cost (e.g., control effort, energy expenditure, distance travelled) is desirable but leads to a non-monotone objective function in the set of robot trajectories. Therefore, common multi-robot planning algorithms based on techniques such as coordinate descent lose their performance guarantees. Methods based on local search provide performance guarantees for optimizing a non-monotone submodular function, but require access to all robots' trajectories, making it not suitable for distributed execution. This work proposes a distributed planning approach based on local search, and shows how to reduce its computation and communication requirements without sacrificing algorithm performance. We demonstrate the efficacy of our proposed method by coordinating robot teams composed of both ground and aerial vehicles with different sensing and control profiles, and evaluate the algorithm's performance in two target tracking scenarios. Our results show up to 60% communication reduction and 80-92% computation reduction on average when coordinating up to 10 robots, while outperforming the coordinate descent based algorithm in achieving a desirable trade-off between sensing and energy expenditure.


翻译:本文审议了为一组具有传感器设备的机器人规划轨迹以减少动态过程不确定性的问题。 优化信息增益与能源成本之间的权衡( 如控制努力、能源支出、距离旅行)是可取的,但会导致一组机器人轨迹中的非分子目标功能。 因此,基于协调下降等技术的共同多机器人规划算法失去了其性能保障。 以本地搜索为基础的方法为优化非分子子模块功能提供了性能保障,但需要访问所有机器人的轨迹,使其不适合分布式执行。 这项工作提出了基于本地搜索的分布式规划方法,并表明如何在不牺牲算法性绩效的情况下减少计算和通信要求。 我们通过协调由具有不同感测和控制特征的地面和空中飞行器组成的机器人团队,在两种目标跟踪情景中评估算法的性能。 我们的结果显示,在协调到10个机器人的轨迹时,平均削减了60%的通信量和80-92 %的计算率。 我们通过协调在理想的机器人之间实现的递增率和成本,我们展示了拟议方法的功效。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员