Surveillance and exploration of large environments is a tedious task. In spaces with limited environmental cues, random-like search appears to be an effective approach as it allows the robot to perform online coverage of environments using a simple design. One way to generate random-like scanning is to use nonlinear dynamical systems to impart chaos into the robot's controller. This will result in generation of unpredictable but at the same time deterministic trajectories, allowing the designer to control the system and achieve a high scanning coverage. However, the unpredictability comes at the cost of increased coverage time and lack of scalability, both of which have been ignored by the state-of-the-art chaotic path planners. This study introduces a new scalable technique that helps a robot to steer away from the obstacles and cover the entire space in a short period of time. The technique involves coupling and manipulating two chaotic systems to minimize the coverage time and enable scanning of unknown environments with different properties online. Using this technique resulted in 49% boost, on average, in the robot's performance compared to the state-of-the-art planners. While ensuring unpredictability in the paths, the overall performance of the chaotic planner remained comparable to optimal systems.


翻译:大型环境的监视和探索是一个乏味的任务。 在环境信号有限的空间, 随机式搜索似乎是一种有效的方法, 因为它允许机器人使用简单的设计进行在线环境覆盖。 生成随机式扫描的方法之一是使用非线性动态系统给机器人的控制器造成混乱。 这将导致产生不可预测但同时也是决定性的轨迹, 使设计者能够控制系统并实现高扫描覆盖。 但是, 不可预测性的代价是覆盖时间的增加和可缩放性缺乏, 两者都被最先进的混乱路径规划器所忽视。 这项研究引入了一种新的可缩放技术, 帮助机器人在短时间内摆脱障碍并覆盖整个空间。 该技术涉及合并和操纵两个混乱系统, 以尽量减少覆盖时间, 并能够以不同属性在网上扫描未知的环境。 使用这一技术, 与最先进的规划器相比, 机器人的性能平均上升了49%, 与最先进的规划器相比, 。 虽然确保路径的不可预测性, 但总体的性能与最优性能保持。

0
下载
关闭预览

相关内容

专知会员服务
18+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
《强化学习—使用 Open AI、TensorFlow和Keras实现》174页pdf
专知会员服务
139+阅读 · 2020年3月1日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年5月16日
Arxiv
0+阅读 · 2021年5月15日
Arxiv
5+阅读 · 2021年2月8日
VIP会员
相关VIP内容
专知会员服务
18+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
《强化学习—使用 Open AI、TensorFlow和Keras实现》174页pdf
专知会员服务
139+阅读 · 2020年3月1日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员