Grasping in dynamic environments presents a unique set of challenges. A stable and reachable grasp can become unreachable and unstable as the target object moves, motion planning needs to be adaptive and in real time, the delay in computation makes prediction necessary. In this paper, we present a dynamic grasping framework that is reachability-aware and motion-aware. Specifically, we model the reachability space of the robot using a signed distance field which enables us to quickly screen unreachable grasps. Also, we train a neural network to predict the grasp quality conditioned on the current motion of the target. Using these as ranking functions, we quickly filter a large grasp database to a few grasps in real time. In addition, we present a seeding approach for arm motion generation that utilizes solution from previous time step. This quickly generates a new arm trajectory that is close to the previous plan and prevents fluctuation. We implement a recurrent neural network (RNN) for modelling and predicting the object motion. Our extensive experiments demonstrate the importance of each of these components and we validate our pipeline on a real robot.
翻译:动态环境中的抓取提出了一套独特的挑战。 稳定且可达的抓取可以随着目标物体的移动而变得不可及且不稳定, 运动规划需要适应性且实时, 计算上的延迟使得预测成为必要。 在本文中, 我们提出了一个动态抓取框架, 这个框架是可达性能和运动感知。 具体地说, 我们用一个签名的距离域来模拟机器人的可达性空间, 从而使我们能够快速筛选不可达得的抓取。 此外, 我们训练一个神经网络, 以预测目标当前运动的握取质量。 以这些为分级功能, 我们迅速将一个大型的抓取数据库过滤到几个实时的抓取点。 此外, 我们提出一个使用前一个时间步骤解决方案的手臂生成的种子方法。 这迅速产生一个新的手臂轨迹, 接近前一个计划, 防止波动。 我们用一个经常性的神经网络( RNN) 来模拟和预测物体运动。 我们进行广泛的实验, 以显示这些部件的重要性, 我们用一个真正的机器人验证我们的管道。