In this paper, we discuss the methodology of generalizing the optimal control law from learned component tasks to unlearned composite tasks on Multi-Agent Systems (MASs), by using the linearity composition principle of linearly solvable optimal control (LSOC) problems. The proposed approach achieves both the compositionality and optimality of control actions simultaneously within the cooperative MAS framework in both discrete- and continuous-time in a sample-efficient manner, which reduces the burden of re-computation of the optimal control solutions for the new task on the MASs. We investigate the application of the proposed approach on the MAS with coordination between agents. The experiments show feasible results in investigated scenarios, including both discrete and continuous dynamical systems for task generalization without resampling.
翻译:在本文件中,我们讨论了通过使用线性可溶性最佳控制(LSOC)问题的线性构成原则,将最佳控制法从学到的构成任务推广到未完成的多机构系统(MAS)综合任务,将最佳控制法从学到的部分任务推广到未完成的综合任务的方法,拟议方法既能同时在MAS合作框架内,以抽样效率高的方式在独立和连续的时间实现控制行动的构成性和最佳性,又能减少重新计算关于MAS新任务的最佳控制办法的负担。我们通过代理协调,调查了对MAS的拟议方法的应用情况。实验表明,在所调查的情景中,包括不重标注的任务一般化的离散和连续动态系统,都取得了可行的结果。