Predicting the supply and demand of transport systems is vital for efficient traffic management, control, optimization, and planning. For example, predicting where from/to and when people intend to travel by taxi can support fleet managers to distribute resources; better predicting traffic speeds/congestion allows for pro-active control measures or for users to better choose their paths. Making spatio-temporal predictions is known to be a hard task, but recently Graph Neural Networks (GNNs) have been widely applied on non-euclidean spatial data. However, most GNN models require a predefined graph, and so far, researchers rely on heuristics to generate this graph for the model to use. In this paper, we use Neural Relational Inference to learn the optimal graph for the model. Our approach has several advantages: 1) a Variational Auto Encoder structure allows for the graph to be dynamically determined by the data, potentially changing through time; 2) the encoder structure allows the use of external data in the generation of the graph; 3) it is possible to place Bayesian priors on the generated graphs to encode domain knowledge. We conduct experiments on two datasets, namely the NYC Yellow Taxi and the PEMS road traffic datasets. In both datasets, we outperform benchmarks and show performance comparable to state-of-the-art. Furthermore, we do an in-depth analysis of the learned graphs, providing insights on what kinds of connections GNNs use for spatio-temporal predictions in the transport domain.


翻译:预测运输系统的供需对于高效的交通管理、控制、优化和规划至关重要。例如,预测从何处到何时人们打算乘出租车旅行,可以支持车队管理人员分配资源;更好地预测交通速度/摄取,可以采取主动的控制措施,或让用户更好地选择自己的路径。已知的是,作出瞬时预测是一项艰巨的任务,但最近对非双球深度空间数据应用了图形神经网络(GNN),然而,大多数GNN模型需要预先确定的图表,迄今为止,研究人员依靠超常模型来生成模型使用的这个图表。在本文件中,我们使用神经关系推断来学习模型的最佳图表。我们的方法有若干优点:(1) 动态自动编码结构使得图表能够动态地由数据决定,可能随着时间的变化而变化;(2) 编码结构允许在生成的图表中使用外部数据;(3) 可能将Bayesian前的直径数据连接放在生成的GEMS轨道数据模型的可比较性能分析中,我们用GURLLLS数据显示我们所学的轨道数据。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员