Multilingual neural machine translation models (MNMT) yield state-of-the-art performance when evaluated on data from a domain and language pair seen at training time. However, when a MNMT model is used to translate under domain shift or to a new language pair, performance drops dramatically. We consider a very challenging scenario: adapting the MNMT model both to a new domain and to a new language pair at the same time. In this paper, we propose $m^4Adapter$ (Multilingual Multi-Domain Adaptation for Machine Translation with a Meta-Adapter), which combines domain and language knowledge using meta-learning with adapters. We present results showing that our approach is a parameter-efficient solution which effectively adapts a model to both a new language pair and a new domain, while outperforming other adapter methods. An ablation study also shows that our approach more effectively transfers domain knowledge across different languages and language information across different domains.
翻译:多语言神经机器翻译模型(MNMT)在对培训时所见域对和语文对数据进行评估时产生最先进的性能。 但是,当使用MNMT模型来翻译域变换或新语言配对时,性能会急剧下降。我们考虑到一个非常具有挑战性的设想:将MNMT模型既调整到一个新的域,又同时调整到一个新的语文配对。在本文中,我们提议$m ⁇ 4Adapter$(Meta-Adapter的多语言机器翻译多语言适应),该模型将域学和语言知识与适应者结合起来。我们提出的结果显示,我们的方法是一种具有参数效率的解决方案,它有效地使模型适应新的语文配对和新领域,同时优于其他的适配方法。一个反研究还表明,我们的方法更有效地将不同语文和不同领域的语言信息转让域知识。