Let $\mathcal{H}(k,n,p)$ be the distribution on $k$-uniform hypergraphs where every subset of $[n]$ of size $k$ is included as an hyperedge with probability $p$ independently. In this work, we design and analyze a simple spectral algorithm that certifies a bound on the size of the largest clique, $\omega(H)$, in hypergraphs $H \sim \mathcal{H}(k,n,p)$. For example, for any constant $p$, with high probability over the choice of the hypergraph, our spectral algorithm certifies a bound of $\tilde{O}(\sqrt{n})$ on the clique number in polynomial time. This matches, up to $\textrm{polylog}(n)$ factors, the best known certificate for the clique number in random graphs, which is the special case of $k = 2$. Prior to our work, the best known refutation algorithms [CGL04, AOW15] rely on a reduction to the problem of refuting random $k$-XOR via Feige's XOR trick [Fei02], and yield a polynomially worse bound of $\tilde{O}(n^{3/4})$ on the clique number when $p = O(1)$. Our algorithm bypasses the XOR trick and relies instead on a natural generalization of the Lovasz theta semidefinite programming relaxation for cliques in hypergraphs.
翻译:Let\ mathcal{H} (k,n,p) $是美元- unify 高压的分布。 例如,对于任何固定的$($[n]$) 美元,其中大小的$[n,p] 美元每个子项都作为高端,概率为美元。 在这项工作中,我们设计并分析一个简单的光谱算法,该算法在最大球形的大小($@mathcral{H} (k,n,p) 的值(美元) (k,n) 轨道。 例如,对于任何固定的$($),在选择高度时概率高的$[n] 美元,我们的光谱算算法在聚度时将$\ tilde{O} (sqrqrqr) 的球形数字绑定下来。 这个匹配,直到 $\ textrumy(n) $(n) cooltial 数,这是美元=2美元的特殊例。 在我们的工作之前, 最已知的解的OF'F translational_xxxxxxxx 问题。