We investigate the geometric hitting set problem in the online setup for the range space $\Sigma=({\cal P},{\cal S})$, where the set $\P\subset\mathbb{R}^2$ is a collection of $n$ points and the set $\cal S$ is a family of geometric objects in $\mathbb{R}^2$. In the online setting, the geometric objects arrive one by one. Upon the arrival of an object, an online algorithm must maintain a valid hitting set by making an irreversible decision, i.e., once a point is added to the hitting set by the algorithm, it can not be deleted in the future. The objective of the geometric hitting set problem is to find a hitting set of the minimum cardinality. Even and Smorodinsky (Discret. Appl. Math., 2014) considered an online model (Model-I) in which the range space $\Sigma$ is known in advance, but the order of arrival of the input objects in $\cal S$ is unknown. They proposed online algorithms having optimal competitive ratios of $\Theta(\log n)$ for intervals, half-planes and unit disks in $\mathbb{R}^2$. Whether such an algorithm exists for unit squares remained open for a long time. This paper considers an online model (Model-II) in which the entire range space $\Sigma$ is not known in advance. We only know the set $\cal P$ but not the set $\cal S$ in advance. Note that any algorithm for Model-II will also work for Model-I, but not vice-versa. In Model-II, we obtain an optimal competitive ratio of $\Theta(\log(n))$ for unit disks and regular $k$-gon with $k\geq 4$ in $\mathbb{R}^2$. All the above-mentioned results also hold for the equivalent geometric set cover problem in Model-II.
翻译:本文研究了在线设置中的几何击中集问题,该问题涉及范围空间$\Sigma=({\cal P},{\cal S})$,其中$\P\subset\mathbb{R}^2$是包含$n$个点的集合,而$\cal S$是$\mathbb{R}^2$中几何对象的集合。在线设置中,几何对象逐个到达。在对象到达时,在线算法必须通过做出不可逆的决定来维护有效的击中集,即通过在线算法添加到击中集中的点在未来不得删除。几何击中集问题的目标是找到一个尽可能小的击中集。Even和Smorodinsky (Discret. Appl. Math., 2014)考虑了一种在线模式(模式-I),其中范围空间$\Sigma$事先已知,但是$\cal S$中输入对象的到达顺序未知。他们提出了在线算法,对于$\mathbb{R}^2$中的区间、半平面和单位圆,具有$\Theta(\log n)$的最优竞争比率。对于单位正方形是否存在这样的算法的问题长期以来一直未解决。本文考虑了一种在线模式(模式-II),其中整个范围空间$\Sigma$在事先未知。我们只知道集合$\cal P$而不知道$\cal S$。注意,对于模式-II的任何算法也适用于模式-I,但反之则不成立。在模式-II中,我们对于$\mathbb{R}^2$中的单位圆和具有$k\geq 4$的正则$k$-gon,获取了一个$\Theta(\log(n))$的最优竞争比率。上述所有结果在等价的几何集合覆盖问题中也成立。