We study the fundamental problem of sampling independent events, called subset sampling. Specifically, consider a set of $n$ events $S=\{x_1, \ldots, x_n\}$, where each event $x_i$ has an associated probability $p(x_i)$. The subset sampling problem aims to sample a subset $T \subseteq S$, such that every $x_i$ is independently included in $S$ with probability $p_i$. A naive solution is to flip a coin for each event, which takes $O(n)$ time. However, the specific goal is to develop data structures that allow drawing a sample in time proportional to the expected output size $\mu=\sum_{i=1}^n p(x_i)$, which can be significantly smaller than $n$ in many applications. The subset sampling problem serves as an important building block in many tasks and has been the subject of various research for more than a decade. However, most of the existing subset sampling approaches are conducted in a static setting, where the events or their associated probability in set $S$ is not allowed to be changed over time. These algorithms incur either large query time or update time in a dynamic setting despite the ubiquitous time-evolving events with changing probability in real life. Therefore, it is a pressing need, but still, an open problem, to design efficient dynamic subset sampling algorithms. In this paper, we propose ODSS, the first optimal dynamic subset sampling algorithm. The expected query time and update time of ODSS are both optimal, matching the lower bounds of the subset sampling problem. We present a nontrivial theoretical analysis to demonstrate the superiority of ODSS. We also conduct comprehensive experiments to empirically evaluate the performance of ODSS. Moreover, we apply ODSS to a concrete application: influence maximization. We empirically show that our ODSS can improve the complexities of existing influence maximization algorithms on large real-world evolving social networks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年7月19日
Arxiv
0+阅读 · 2023年7月14日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员