Dense Associative Memories or modern Hopfield networks permit storage and reliable retrieval of an exponentially large (in the dimension of feature space) number of memories. At the same time, their naive implementation is non-biological, since it seemingly requires the existence of many-body synaptic junctions between the neurons. We show that these models are effective descriptions of a more microscopic (written in terms of biological degrees of freedom) theory that has additional (hidden) neurons and only requires two-body interactions between them. For this reason our proposed microscopic theory is a valid model of large associative memory with a degree of biological plausibility. The dynamics of our network and its reduced dimensional equivalent both minimize energy (Lyapunov) functions. When certain dynamical variables (hidden neurons) are integrated out from our microscopic theory, one can recover many of the models that were previously discussed in the literature, e.g. the model presented in "Hopfield Networks is All You Need" paper. We also provide an alternative derivation of the energy function and the update rule proposed in the aforementioned paper and clarify the relationships between various models of this class.


翻译:神经神经元之间的许多身体合成交叉点似乎需要存在这些神经元之间的许多身体合成连接点,因此,这些模型有效地描述了一种更微观的(以生物自由度写成的)理论,这种理论具有额外的(隐藏的)神经元,只需要它们之间的双体互动。因此,我们提议的微观科学理论是具有某种程度的生物可视性的大型联系记忆的有效模型。我们网络的动态及其减少的维等值的动态,既能最大限度地减少能量(Lyapunov)功能。当某些动态变量(隐藏的神经元)从我们的微观理论中整合出来时,人们可以恢复以前在文献中讨论过的许多模型,例如,“Hopfield Networks is All You need” 文件中介绍的模型。我们还提供了能源功能的替代衍生法和上述文件中的拟议规则的更新,并澄清了各种模型之间的关系。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Machine Learning:十大机器学习算法
开源中国
21+阅读 · 2018年3月1日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年4月26日
Arxiv
0+阅读 · 2021年4月26日
Arxiv
0+阅读 · 2021年4月25日
Arxiv
0+阅读 · 2021年4月20日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
22+阅读 · 2019年11月24日
Arxiv
8+阅读 · 2018年3月20日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Machine Learning:十大机器学习算法
开源中国
21+阅读 · 2018年3月1日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
0+阅读 · 2021年4月26日
Arxiv
0+阅读 · 2021年4月26日
Arxiv
0+阅读 · 2021年4月25日
Arxiv
0+阅读 · 2021年4月20日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
22+阅读 · 2019年11月24日
Arxiv
8+阅读 · 2018年3月20日
Top
微信扫码咨询专知VIP会员