Few-shot and one-shot learning have been the subject of active and intensive research in recent years, with mounting evidence pointing to successful implementation and exploitation of few-shot learning algorithms in practice. Classical statistical learning theories do not fully explain why few- or one-shot learning is at all possible since traditional generalisation bounds normally require large training and testing samples to be meaningful. This sharply contrasts with numerous examples of successful one- and few-shot learning systems and applications. In this work we present mathematical foundations for a theory of one-shot and few-shot learning and reveal conditions specifying when such learning schemes are likely to succeed. Our theory is based on intrinsic properties of high-dimensional spaces. We show that if the ambient or latent decision space of a learning machine is sufficiently high-dimensional than a large class of objects in this space can indeed be easily learned from few examples provided that certain data non-concentration conditions are met.


翻译:近些年来,对少发和一发学习进行了积极和深入的研究,越来越多的证据表明在实践中成功实施和利用了少发学习算法,古典统计学理论没有完全解释为什么可以进行少发或一发学习,因为传统的概括性界限通常要求大量的培训和测试样本才有意义,这与一发和少发学习系统和应用的成功事例大相径庭。在这项工作中,我们为一发和少发学习理论提供了数学基础,并揭示了可能取得成功的条件。我们的理论以高维空间的内在特性为基础。我们表明,如果学习机器的环境或潜在决策空间比这一空间的一大批物体具有足够高的维度,确实可以很容易地从少数例子中学习,只要满足某些非集中性数据条件即可。

0
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
对比学习(Contrastive Learning)相关进展梳理
PaperWeekly
10+阅读 · 2020年5月12日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
PaperWeekly
120+阅读 · 2019年4月1日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年6月14日
Arxiv
17+阅读 · 2021年2月15日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Arxiv
13+阅读 · 2019年1月26日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
5+阅读 · 2017年10月27日
VIP会员
相关资讯
对比学习(Contrastive Learning)相关进展梳理
PaperWeekly
10+阅读 · 2020年5月12日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
PaperWeekly
120+阅读 · 2019年4月1日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
0+阅读 · 2021年6月14日
Arxiv
17+阅读 · 2021年2月15日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Arxiv
13+阅读 · 2019年1月26日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
5+阅读 · 2017年10月27日
Top
微信扫码咨询专知VIP会员