Evaluating the safety of an autonomous vehicle (AV) depends on the behavior of surrounding agents which can be heavily influenced by factors such as environmental context and informally-defined driving etiquette. A key challenge is in determining a minimum set of assumptions on what constitutes reasonable foreseeable behaviors of other road users for the development of AV safety models and techniques. In this paper, we propose a data-driven AV safety design methodology that first learns ``reasonable'' behavioral assumptions from data, and then synthesizes an AV safety concept using these learned behavioral assumptions. We borrow techniques from control theory, namely high order control barrier functions and Hamilton-Jacobi reachability, to provide inductive bias to aid interpretability, verifiability, and tractability of our approach. In our experiments, we learn an AV safety concept using demonstrations collected from a highway traffic-weaving scenario, compare our learned concept to existing baselines, and showcase its efficacy in evaluating real-world driving logs.
翻译:评估自主车辆(AV)的安全性取决于周围物剂的行为,这些物剂可能受到环境环境背景和非正式界定的驾驶礼仪等因素的严重影响。一个关键的挑战是如何确定一套关于其他道路使用者为开发AV安全模式和技术而合理可预见的行为的最起码假设。在本文中,我们提出了一个数据驱动的AV安全设计方法,首先从数据中学习“合理”的行为假设,然后利用这些学到的行为假设合成AV安全概念。我们借用控制理论的技术,即高秩序控制屏障功能和汉密尔顿-Jacobbi的可达性,为帮助我们的方法的可解释性、可核查性和可移动性提供诱导的偏向性。我们在实验中,利用从高速交通编织情景中收集的演示方法学习AV安全概念,将我们所学到的概念与现有基线进行比较,并展示其在评价现实世界驾驶记录方面的功效。