We provide a general solution to a fundamental open problem in Bayesian inference, namely poor uncertainty quantification, from a frequency standpoint, of Bayesian methods in misspecified models. While existing solutions are based on explicit Gaussian approximations of the posterior, or computationally onerous post-processing procedures, we demonstrate that correct uncertainty quantification can be achieved by replacing the usual posterior with an intuitive approximate posterior. Critically, our solution is applicable to likelihood-based, and generalized, posteriors as well as cases where the likelihood is intractable and must be estimated. We formally demonstrate the reliable uncertainty quantification of our proposed approach, and show that valid uncertainty quantification is not an asymptotic result but occurs even in small samples. We illustrate this approach through a range of examples, including linear, and generalized, mixed effects models.


翻译:我们为巴伊西亚推论中一个根本的开放问题提供了一种一般性的解决办法,即从频率角度出发,对巴伊西亚方法在错误描述模型中的不确定性的定量不高;虽然现有解决办法基于对后继物的明确的高斯近似值,或计算繁琐的后处理程序,但我们证明,可以用直观的近似后继物取代通常的后继物,从而实现正确的不确定性的量化。关键的是,我们的解决办法适用于基于可能性的、普遍的后继物以及可能性难以解决且必须加以估计的情况。我们正式表明,我们拟议方法的可靠的不确定性量化,并表明有效的不确定性量化并非一种无药可治的结果,而是甚至在小样本中发生。我们通过一系列实例,包括直线效应模型和普遍的混合效应模型,来说明这一方法。

0
下载
关闭预览

相关内容

贝叶斯推断(BAYESIAN INFERENCE)是一种应用于不确定性条件下的决策的统计方法。贝叶斯推断的显著特征是,为了得到一个统计结论能够利用先验信息和样本信息。
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月31日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
10+阅读 · 2021年2月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员