We study deterministic matrix completion problem, i.e., recovering a low-rank matrix from a few observed entries where the sampling set is chosen as the edge set of a Ramanujan graph. We first investigate projected gradient descent (PGD) applied to a Burer-Monteiro least-squares problem and show that it converges linearly to the incoherent ground-truth with respect to the condition number \k{appa} of ground-truth under a benign initialization and large samples. We next apply the scaled variant of PGD to deal with the ill-conditioned case when \k{appa} is large, and we show the algorithm converges at a linear rate independent of the condition number \k{appa} under similar conditions. Finally, we provide numerical experiments to corroborate our results.
翻译:暂无翻译