Variational methods are extremely popular in the analysis of network data. Statistical guarantees obtained for these methods typically provide asymptotic normality for the problem of estimation of global model parameters under the stochastic block model. In the present work, we consider the case of networks with missing links that is important in application and show that the variational approximation to the maximum likelihood estimator converges at the minimax rate. This provides the first minimax optimal and tractable estimator for the problem of parameter estimation for the stochastic block model with missing links. We complement our results with numerical studies of simulated and real networks, which confirm the advantages of this estimator over current methods.
翻译:在网络数据分析中,差异性方法极受欢迎。为这些方法获得的统计保障通常为在随机区块模型模型下估计全球模型参数的问题提供无症状的正常性。在目前的工作中,我们考虑缺少连接环节的网络的情况,这种网络在应用中很重要,并表明与最大可能性估计值的变近接近值在微缩轴速率上汇合。这为缺少链接的随机区块模型的参数估计问题提供了第一个最优化和可移动的估计值。我们用模拟和实际网络的数字研究来补充我们的结果,这些研究证实了这一估计值相对于当前方法的优势。