We develop Bayesian neural networks (BNNs) that permit to model generic nonlinearities and time variation for (possibly large sets of) macroeconomic and financial variables. From a methodological point of view, we allow for a general specification of networks that can be applied to either dense or sparse datasets, and combines various activation functions, a possibly very large number of neurons, and stochastic volatility (SV) for the error term. From a computational point of view, we develop fast and efficient estimation algorithms for the general BNNs we introduce. From an empirical point of view, we show both with simulated data and with a set of common macro and financial applications that our BNNs can be of practical use, particularly so for observations in the tails of the cross-sectional or time series distributions of the target variables.
翻译:我们开发了贝叶斯神经网络(BNNs),可以模拟通用的非线性和时间变异性(可能是大数组)宏观经济和金融变量。从方法观点看,我们允许对可应用于密集或稀少数据集的网络作一般性说明,并结合各种激活功能、可能非常大量的神经元和误差术语的随机挥发性(SV)。从计算角度看,我们为我们介绍的通用BNs制定了快速有效的估算算法。从经验角度看,我们用模拟数据以及一套共同的宏观和财务应用来显示,我们的BNNs可以实际使用,特别是在目标变量的截面或时间序列分布的尾部进行观测。