We prove theorems about the Gaussian asymptotics of an empirical bridge built from linear model regressors with multiple regressor ordering. We study the testing of the hypothesis of a linear model for the components of a random vector: one of the components is a linear combination of the others up to an error that does not depend on the other components of the random vector. The results of observations of independent copies of a random vector are sequentially ordered in ascending order of several of its components. The result is a sequence of vectors of higher dimension, consisting of induced order statistics (concomitants) corresponding to different orderings. For this sequence of vectors, without the assumption of a linear model for the components, we prove a lemma of weak convergence of the distributions of an appropriately centered and normalized process to a centered Gaussian process with almost surely continuous trajectories. Assuming a linear relationship of the components, standard least squares estimates are used to compute regression residuals -- the differences between response values and the predicted ones by the linear model. We prove a theorem of weak convergence of the process of regression residuals under the necessary normalization to a centered Gaussian process.


翻译:我们证明关于由线性模型递减器和多个递减器订购的实验桥的Gaussian 零点设置的实验桥的理论。 我们研究对随机矢量组成部分的线性模型假设的测试: 其中一个组件是其他矢量组成部分的线性组合, 最终是一个不取决于随机矢量其他组成部分的错误。 随机矢量独立副本的观测结果按其若干组成部分的升序顺序顺序顺序顺序排列。 结果是一个更高尺寸矢量的矢量序列, 包括与不同顺序对应的诱发顺序统计( comitants) 。 对于这个矢量序列, 没有假设组件的线性模型的线性模型, 我们证明, 一个适当的中心化和正常化进程分布到一个中心点的高斯进程, 几乎可以肯定连续的轨迹。 假设各组成部分的线性关系, 标准的最小方估计用于对回归残余物进行折算 -- -- 响应值和直线性模型预测值之间的差异。 我们证明, 在一个基本回归进程下, 渐趋的回归中心, 渐趋一致。

0
下载
关闭预览

相关内容

对于给定d个属性描述的示例x=(x1,x2,......,xd),通过属性的线性组合来进行预测。一般的写法如下: f(x)=w'x+b,因此,线性模型具有很好的解释性(understandability,comprehensibility),参数w代表每个属性在回归过程中的重要程度。
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
深度神经网络压缩和加速相关最全资源分享
深度学习与NLP
3+阅读 · 2019年7月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Arxiv
0+阅读 · 2021年8月11日
Arxiv
0+阅读 · 2021年8月10日
Level-strategyproof Belief Aggregation Mechanisms
Arxiv
0+阅读 · 2021年8月10日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关资讯
深度神经网络压缩和加速相关最全资源分享
深度学习与NLP
3+阅读 · 2019年7月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Top
微信扫码咨询专知VIP会员