Temporal graphs represent graph evolution over time, and have been receiving considerable research attention. Work on expressing temporal graph patterns or discovering temporal motifs typically assumes relatively simple temporal constraints, such as journeys or, more generally, existential constraints, possibly with finite delays. In this paper we propose to use timed automata to express temporal constraints, leading to a general and powerful notion of temporal basic graph pattern (BGP). The new difficulty is the evaluation of the temporal constraint on a large set of matchings. An important benefit of timed automata is that they support an iterative state assignment, which can be useful for early detection of matches and pruning of non-matches. We introduce algorithms to retrieve all instances of a temporal BGP match in a graph, and present results of an extensive experimental evaluation, demonstrating interesting performance trade-offs. We show that an on-demand algorithm that processes total matchings incrementally over time is preferable when dealing with cyclic patterns on sparse graphs. On acyclic patterns or dense graphs, and when connectivity of partial matchings can be guaranteed, the best performance is achieved by maintaining partial matchings over time and allowing automaton evaluation to be fully incremental.
翻译:时间图形代表了时间图的演变,并一直受到相当大的研究关注。 表达时间图形模式或发现时间元素的工作通常假设相对简单的时间限制, 如行程或更一般的存续限制, 可能存在有限的延迟。 在本文中, 我们提议使用时间自动模型来表达时间限制, 导致时间基本图形模式的普遍和强大的概念( BGP ) 。 新的困难是评估大量匹配的时间限制。 时间自动数据的一个重要好处是它们支持迭接状态任务, 迭接状态任务对于早期发现匹配和非配对的切合和剪接非常有用。 我们引入算法, 以在图表中检索所有时间 BGP匹配的所有实例, 并展示广泛的实验性评估的结果, 展示有趣的绩效权衡。 我们显示, 在处理微小图形的周期性模式时, 比较简单化模式或密度图形, 当部分匹配可以保证连接的连接性时, 最佳的性能是通过保持部分配对时间和允许自动评估完全递增来实现。