We propose a framework for Bayesian Likelihood-Free Inference (LFI) based on Generalized Bayesian Inference using scoring rules (SR). SR are used to evaluate probabilistic models given an observation; a proper SR is minimised in expectation when the model corresponds to the true data generating process for the observation. Using a strictly proper SR, for which the above minimum is unique, ensures posterior consistency of our method. As the likelihood function is intractable for LFI, we employ consistent estimators of SR using model simulations in a pseudo-marginal MCMC; we show the target of such chain converges to the exact SR posterior with increasing number of simulations. Furthermore, we note popular LFI techniques like Bayesian Synthetic Likelihood (BSL) and semiparametric BSL can be seen as special cases of our framework using only proper (but not strictly so) SR. We provide empirical results validating our consistency result and show how related approaches do not enjoy this property. Practically, we use the Energy and Kernel Scores, but our general framework sets the stage for extensions with other scoring rules.
翻译:我们建议采用评分规则(SR),根据通用贝耶斯测算法(LFI),为巴伊西亚测算法(LFI)提供一个框架。 SR用于评估观察到的概率模型;当模型与真正的观测数据生成过程相匹配时,适当的SR在预期中被最小化。 使用严格的适当的SR(上述最低值是独一无二的),可以确保我们方法的后方一致性。 由于可能性功能对LFI来说是难以解决的,我们采用模拟假边际监测器的模型,对SR进行一致的估测; 我们用模拟模型来显示这种链条的目标与精确的SR后方相融合,模拟次数越来越多。 此外,我们注意到流行的LFI技术,如巴伊西亚合成相似度(BSL)和半参数BSL等,可以被视为我们框架的特殊案例,仅使用适当的(但并非严格意义上的)SR。 我们提供了验证我们一致性结果的经验结果,并表明我们如何不享有这一特性。 我们实际上使用能源和Kernelotel标准,但我们的总框架为其他扩展规则设置了阶段。