We introduce INSTRUCTOR, a new method for computing text embeddings given task instructions: every text input is embedded together with instructions explaining the use case (e.g., task and domain descriptions). Unlike encoders from prior work that are more specialized, INSTRUCTOR is a single embedder that can generate text embeddings tailored to different downstream tasks and domains, without any further training. We first annotate instructions for 330 diverse tasks and train INSTRUCTOR on this multitask mixture with a contrastive loss. We evaluate INSTRUCTOR on 70 embedding evaluation tasks (66 of which are unseen during training), ranging from classification and information retrieval to semantic textual similarity and text generation evaluation. INSTRUCTOR, while having an order of magnitude fewer parameters than the previous best model, achieves state-of-the-art performance, with an average improvement of 3.4% compared to the previous best results on the 70 diverse datasets. Our analysis suggests that INSTRUCTOR is robust to changes in instructions, and that instruction finetuning mitigates the challenge of training a single model on diverse datasets. Our model, code, and data are available at https://instructor-embedding.github.io.
翻译:我们引入了Instructor, 这是一种计算文本嵌入给定任务指示的新方法:每份文本输入与解释使用案例的说明(例如任务和域说明)一起嵌入。与以前更为专业化的工作的编码器不同, Instrictor是一个单一的嵌入器,可以生成适合不同下游任务和领域的文本嵌入,无需任何进一步培训。我们首先为330项不同任务作说明,并针对这一具有对比性损失的多任务混合物培训Instructor。我们评估了70项嵌入评价任务(其中66项在培训期间不为人知),从分类和信息检索到语义文本相似性和文本生成评估等,从分类和信息检索到语义相似性与文本生成评估。 Instricuttor虽然比前一个最佳模型的参数少了一定数量,但实现了艺术状态的性能,与70个不同数据集的以往最佳结果相比,平均提高了3.4%。我们的分析表明,Instrictor对指示的变化非常有力,而指示的调整减轻了培训不同数据设置单一模型的挑战。我们的模型、代码和数据可在 http://embsregruction.