A key challenge for machine intelligence is to learn new visual concepts without forgetting the previously acquired knowledge. Continual learning is aimed towards addressing this challenge. However, there is a gap between existing supervised continual learning and human-like intelligence, where human is able to learn from both labeled and unlabeled data. How unlabeled data affects learning and catastrophic forgetting in the continual learning process remains unknown. To explore these issues, we formulate a new semi-supervised continual learning method, which can be generically applied to existing continual learning models. Specifically, a novel gradient learner learns from labeled data to predict gradients on unlabeled data. Hence, the unlabeled data could fit into the supervised continual learning method. Different from conventional semi-supervised settings, we do not hypothesize that the underlying classes, which are associated to the unlabeled data, are known to the learning process. In other words, the unlabeled data could be very distinct from the labeled data. We evaluate the proposed method on mainstream continual learning, adversarial continual learning, and semi-supervised learning tasks. The proposed method achieves state-of-the-art performance on classification accuracy and backward transfer in the continual learning setting while achieving desired performance on classification accuracy in the semi-supervised learning setting. This implies that the unlabeled images can enhance the generalizability of continual learning models on the predictive ability on unseen data and significantly alleviate catastrophic forgetting. The code is available at \url{https://github.com/luoyan407/grad_prediction.git}.


翻译:机器智能的关键挑战是如何学习新的视觉概念而不忘记先前获得的知识。 持续学习是旨在应对这一挑战。 但是, 现有的受监管的不断学习和人类智能之间存在差距, 人类能够从标签和未标签数据中学习。 没有标签的数据如何影响学习和持续学习过程中的灾难性遗忘, 仍然未知。 要探索这些问题, 我们制定一个新的半监督的连续学习方法, 可以通用地应用到现有的持续学习模式。 具体地说, 新的梯度学习者从标签数据中学习, 以预测未标签数据上的梯度。 因此, 无标签的数据可以适合受监管的持续学习方法。 不同于传统的半监督的设置, 我们并不低估与未标签数据相关的基本课程是如何影响学习的。 换句话说, 未标签的数据可能与标签数据非常不同。 我们评估了关于主流持续学习、 对抗性持续学习、 半监督学习任务的拟议方法。 拟议的方法在常规的 Obliver 分类中, 在不断学习的精确度上, 在持续学习的精确度上, 在持续学习的精确度上, 能够大幅地学习 学习 继续学习 持续学习的精确性 。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
32+阅读 · 2021年7月15日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月24日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员