In a recent work we have shown how to construct an information algebra of coherent sets of gambles defined on general possibility spaces. Here we analyze the connection of such an algebra with the set algebra of subsets of the possibility space on which gambles are defined and the set algebra of sets of its atoms. Set algebras are particularly important information algebras since they are their prototypical structures. Furthermore, they are the algebraic counterparts of classical propositional logic. As a consequence, this paper also details how propositional logic is naturally embedded into the theory of imprecise probabilities.
翻译:在最近的一项工作中,我们展示了如何构建关于一般可能性空间定义的一组一致赌博的信息代数的信息代数。 在这里,我们分析了这样一个代数与确定赌博的可能性空间子集的一组代数和其原子组的一组代数的一组代数之间的联系。 设置代数是特别重要的信息代数,因为它们是其原型结构。 此外,它们是传统理论逻辑的代数等同体。 因此,本文还详细说明了假设逻辑如何自然地嵌入不精确概率理论中。