We introduce multivariate ordered discrete response models with general rectangular structures. From the perspective of behavioral economics, these non-lattice models correspond to broad bracketing in decision making, whereas lattice models, which researchers typically estimate in practice, correspond to narrow bracketing. In these models, we specify latent processes as a sum of an index of covariates and an unobserved error, with unobservables for different latent processes potentially correlated. We provide conditions that are sufficient for identification under the independence of errors and covariates and outline an estimation approach. We present simulations and empirical examples, with a particular focus on probit specifications.
翻译:我们引入了带有一般矩形结构的多变量定序离散响应模型。从行为经济学的角度来看,这些非纬度模型与决策中的宽括号相对应,而研究人员通常在实践中估计的细括号模型则与窄括号相对应。在这些模型中,我们指定潜在过程为共变和未观察到错误的指数之和,不同潜在过程的不可观察性可能具有关联性。我们提供的条件足以在错误和共变独立的情况下进行识别,并勾勒出一种估算方法。我们提出模拟和经验实例,特别侧重于robit规格。</s>