Motivated by biological considerations, we study sparse neural maps from an input layer to a target layer with sparse activity, and specifically the problem of storing $K$ input-target associations $(x,y)$, or memories, when the target vectors $y$ are sparse. We mathematically prove that $K$ undergoes a phase transition and that in general, and somewhat paradoxically, sparsity in the target layers increases the storage capacity of the map. The target vectors can be chosen arbitrarily, including in random fashion, and the memories can be both encoded and decoded by networks trained using local learning rules, including the simple Hebb rule. These results are robust under a variety of statistical assumptions on the data. The proofs rely on elegant properties of random polytopes and sub-gaussian random vector variables. Open problems and connections to capacity theories and polynomial threshold maps are discussed.


翻译:基于生物考虑,我们研究从输入层到活动稀少的目标层的稀有神经图,特别是当目标矢量稀少时储存输入目标组合$(x,y)美元或记忆的问题。我们在数学上证明,K$经历了一个阶段的过渡,目标层的宽度一般和有些自相矛盾地提高了地图的储存能力。目标矢量可以任意选择,包括随机选择,记忆可以由经过当地学习规则(包括简单的Hebb规则)培训的网络编码和解码。这些结果在数据上的各种统计假设下是强有力的。证据依赖于随机多式多台式和次双陆式矢量随机变量的优雅性。讨论了与能力理论和多元值阈值地图的公开问题和关联。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
32+阅读 · 2020年4月15日
专知会员服务
161+阅读 · 2020年1月16日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月14日
Arxiv
0+阅读 · 2021年4月11日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Adaptive Neural Trees
Arxiv
4+阅读 · 2018年12月10日
Neural Arithmetic Logic Units
Arxiv
5+阅读 · 2018年8月1日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
32+阅读 · 2020年4月15日
专知会员服务
161+阅读 · 2020年1月16日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员