A recent goal in the theory of deep learning is to identify how neural networks can escape the "lazy training," or Neural Tangent Kernel (NTK) regime, where the network is coupled with its first order Taylor expansion at initialization. While the NTK is minimax optimal for learning dense polynomials (Ghorbani et al, 2021), it cannot learn features, and hence has poor sample complexity for learning many classes of functions including sparse polynomials. Recent works have thus aimed to identify settings where gradient based algorithms provably generalize better than the NTK. One such example is the "QuadNTK" approach of Bai and Lee (2020), which analyzes the second-order term in the Taylor expansion. Bai and Lee (2020) show that the second-order term can learn sparse polynomials efficiently; however, it sacrifices the ability to learn general dense polynomials. In this paper, we analyze how gradient descent on a two-layer neural network can escape the NTK regime by utilizing a spectral characterization of the NTK (Montanari and Zhong, 2020) and building on the QuadNTK approach. We first expand upon the spectral analysis to identify "good" directions in parameter space in which we can move without harming generalization. Next, we show that a wide two-layer neural network can jointly use the NTK and QuadNTK to fit target functions consisting of a dense low-degree term and a sparse high-degree term -- something neither the NTK nor the QuadNTK can do on their own. Finally, we construct a regularizer which encourages our parameter vector to move in the "good" directions, and show that gradient descent on the regularized loss will converge to a global minimizer, which also has low test error. This yields an end to end convergence and generalization guarantee with provable sample complexity improvement over both the NTK and QuadNTK on their own.


翻译:深层次学习理论中最近的一个目标是确定神经网络如何摆脱“ 低度培训 ” 或 Neal Tangent Kernel (NTK) 的“ 低度培训 ” 制度。 其中一个例子是Bai 和 Lee (2020) 的“ QadNTK ” 方法, 分析泰勒 扩展的第二阶期 。 Bai 和 Lee (202020) 显示, 第二阶期可以有效地学习稀薄的多元数学(Ghorbani et al, 2021), 因而对于学习包括稀薄的多元数学在内的许多功能来说, 其抽样复杂性很低。 因此, 最近的工作旨在找出基于梯度的运算法比NTK 系统更普遍普及的设置。 其中一个例子是Bai和 Lee (2020) 的“ QadNTK ” 方法, 分析第二阶梯级的第二阶梯期, 也可以在我们Oral Ration Ration 上显示一个正常的运算。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月26日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员