In this work, we consider the distributed optimization setting where information exchange between the computation nodes and the parameter server is subject to a maximum bit-budget. We first consider the problem of compressing a vector in the n-dimensional Euclidean space, subject to a bit-budget of R-bits per dimension, for which we introduce Democratic and Near-Democratic source-coding schemes. We show that these coding schemes are (near) optimal in the sense that the covering efficiency of the resulting quantizer is either dimension independent, or has a very weak logarithmic dependence. Subsequently, we propose a distributed optimization algorithm: DGD-DEF, which employs our proposed coding strategy, and achieves the minimax optimal convergence rate to within (near) constant factors for a class of communication-constrained distributed optimization algorithms. Furthermore, we extend the utility of our proposed source coding scheme by showing that it can remarkably improve the performance when used in conjunction with other compression schemes. We validate our theoretical claims through numerical simulations. Keywords: Fast democratic (Kashin) embeddings, Distributed optimization, Data-rate constraint, Quantized gradient descent, Error feedback.
翻译:在这项工作中,我们考虑在计算节点和参数服务器之间的信息交流受最大比位预算制约的分布式优化设置。我们首先考虑在正维 Euclidean 空间压缩矢量的问题,每个维度要略略预算R比特,为此我们引入了民主与近民主源代码方案。我们表明,这些编码方案是(近)最佳的,因为覆盖由此生成的量化器的效率是独立的维度,或者对数依赖性非常弱。随后,我们建议了一个分布式优化算法:DGD-DEF,它使用我们提议的编码战略,并实现最小最大最佳趋同率,在通信限制的分布优化算法类别中的常数内(接近)实现。此外,我们扩展了我们提议的源代码计划的效用,表明它与其他压缩计划一起使用时能够显著改进性能。我们通过数字模拟来验证我们的理论主张。关键词:快速民主嵌入(Kashin)、分散式优化、数据-国家级错误差、Qtalizalimate regrodetion。