Online updating of the object model via samples from historical frames is of great importance for accurate visual object tracking. Recent works mainly focus on constructing effective and efficient updating methods while neglecting the training samples for learning discriminative object models, which is also a key part of a learning problem. In this paper, we propose the DeepMix that takes historical samples' embeddings as input and generates augmented embeddings online, enhancing the state-of-the-art online learning methods for visual object tracking. More specifically, we first propose the online data augmentation for tracking that online augments the historical samples through object-aware filtering. Then, we propose MixNet which is an offline trained network for performing online data augmentation within one-step, enhancing the tracking accuracy while preserving high speeds of the state-of-the-art online learning methods. The extensive experiments on three different tracking frameworks, i.e., DiMP, DSiam, and SiamRPN++, and three large-scale and challenging datasets, \ie, OTB-2015, LaSOT, and VOT, demonstrate the effectiveness and advantages of the proposed method.
翻译:通过历史框架的样本在线更新物体模型对于准确的视觉物体跟踪非常重要。最近的工作主要侧重于构建有效和高效的更新方法,同时忽略了用于学习歧视性物体模型的培训样本,这也是学习问题的一个关键部分。在本文中,我们提议采用深混集,将历史样本嵌入作为投入,并产生更多的在线嵌入,从而增强视觉物体跟踪的最新在线学习方法。更具体地说,我们首先提议在线数据增强,用于跟踪通过天体觉过滤在线增强历史样本的在线数据。然后,我们提议MixNet,这是一个经过培训的离线网络,用于在一步骤内进行在线数据增强,提高跟踪准确性,同时保持最新在线学习方法的高速度。关于三个不同跟踪框架的广泛实验,即DIMP、DSiam和SiamRPN+++,以及三个大规模且具有挑战性的数据集,即\ie、OTB-2015、LASOT和VOT,展示了拟议方法的有效性和优势。