Domain Generalization (DG) aims to learn a model that can generalize well to unseen target domains from a set of source domains. With the idea of invariant causal mechanism, a lot of efforts have been put into learning robust causal effects which are determined by the object yet insensitive to the domain changes. Despite the invariance of causal effects, they are difficult to be quantified and optimized. Inspired by the ability that humans adapt to new environments by prior knowledge, We develop a novel Contrastive Causal Model (CCM) to transfer unseen images to taught knowledge which are the features of seen images, and quantify the causal effects based on taught knowledge. Considering the transfer is affected by domain shifts in DG, we propose a more inclusive causal graph to describe DG task. Based on this causal graph, CCM controls the domain factor to cut off excess causal paths and uses the remaining part to calculate the causal effects of images to labels via the front-door criterion. Specifically, CCM is composed of three components: (i) domain-conditioned supervised learning which teaches CCM the correlation between images and labels, (ii) causal effect learning which helps CCM measure the true causal effects of images to labels, (iii) contrastive similarity learning which clusters the features of images that belong to the same class and provides the quantification of similarity. Finally, we test the performance of CCM on multiple datasets including PACS, OfficeHome, and TerraIncognita. The extensive experiments demonstrate that CCM surpasses the previous DG methods with clear margins.


翻译:域通用 (DG) 旨在学习一种模型,该模型能够从一组源域中向看不见的目标领域广泛推广。 有了不变因果机制的概念,我们付出了很多努力来学习由对象决定的稳健因果效应,而这些因果效应对域变化并不敏感。 尽管因果效应存在差异,但它们难以量化和优化。 受人类通过先前的知识适应新环境的能力的启发, 我们开发了一个新型的地域差异因果模型(CCM), 将看不见的图像传输给作为可见图像特征的教学知识, 并根据所学知识量化因果效应。 考虑到转移受到DG域变化的影响, 我们提议了一个更具包容性的因果因果效果图表来描述DG任务。 基于这一因果图, CCM 控制了域因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果因果

1
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
12+阅读 · 2021年6月29日
Arxiv
10+阅读 · 2021年2月26日
Arxiv
14+阅读 · 2020年12月17日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员