Close to the origin, the nonlinear Klein--Gordon equations on the circle are nearly integrable Hamiltonian systems which have infinitely many almost conserved quantities called harmonic actions or super-actions. We prove that, at low regularity and with a CFL number of size 1, this property is preserved if we discretize the nonlinear Klein--Gordon equations with the symplectic mollified impulse methods. This extends previous results of D. Cohen, E. Hairer and C. Lubich to non-smooth solutions.
翻译:暂无翻译