While robust divergence such as density power divergence and $\gamma$-divergence is helpful for robust statistical inference in the presence of outliers, the tuning parameter that controls the degree of robustness is chosen in a rule-of-thumb, which may lead to an inefficient inference. We here propose a selection criterion based on an asymptotic approximation of the Hyvarinen score applied to an unnormalized model defined by robust divergence. The proposed selection criterion only requires first and second-order partial derivatives of an assumed density function with respect to observations, which can be easily computed regardless of the number of parameters. We demonstrate the usefulness of the proposed method via numerical studies using normal distributions and regularized linear regression.
翻译:虽然密度功率差和美元等强差(gamma$-divegence)有助于在有外部线的情况下进行可靠的统计推断,但控制稳健程度的调制参数是在一个轮式规则中选择的,这可能导致低效推论。我们在此提议一个基于Hyvarinen分数的无症状近似值的选定标准,适用于一种以强差定义的未正常化模式。提议的选用标准仅要求假设密度函数的第一和第二级部分衍生物在观测方面进行,而不论参数的数量如何,都很容易计算出来。我们通过使用正常分布和正常的线性回归进行数字研究,显示了拟议方法的有用性。