Characterizing and understanding graph neural networks (GNNs) is essential for identifying performance bottlenecks and facilitating their deployment in parallel and distributed systems. Despite substantial work in this area, a comprehensive survey on characterizing and understanding GNNs from a computer architecture perspective is lacking. This work presents a comprehensive survey, proposing a triple-level classification method to categorize, summarize, and compare existing efforts, particularly focusing on their implications for parallel architectures and distributed systems. We identify promising future directions for GNN characterization that align with the challenges of optimizing hardware and software in parallel and distributed systems. Our survey aims to help scholars systematically understand GNN performance bottlenecks and execution patterns from a computer architecture perspective, thereby contributing to the development of more efficient GNN implementations across diverse parallel architectures and distributed systems.
翻译:暂无翻译