Static Analysis (SA) tools are used to identify potential weaknesses in code and fix them in advance, while the code is being developed. In legacy codebases with high complexity, these rules-based static analysis tools generally report a lot of false warnings along with the actual ones. Though the SA tools uncover many hidden bugs, they are lost in the volume of fake warnings reported. The developers expend large hours of time and effort in identifying the true warnings. Other than impacting the developer productivity, true bugs are also missed out due to this challenge. To address this problem, we propose a Machine Learning (ML)-based learning process that uses source codes, historic commit data, and classifier-ensembles to prioritize the True warnings from the given list of warnings. This tool is integrated into the development workflow to filter out the false warnings and prioritize actual bugs. We evaluated our approach on the networking C codes, from a large data pool of static analysis warnings reported by the tools. Time-to-time these warnings are addressed by the developers, labelling them as authentic bugs or fake alerts. The ML model is trained with full supervision over the code features. Our results confirm that applying deep learning over the traditional static analysis reports is an assuring approach for drastically reducing the false positive rates.


翻译:静态分析(SA) 工具用于识别代码中的潜在弱点并提前修正这些弱点,而该代码正在开发过程中。在具有高度复杂性的遗留代码库中,基于规则的静态分析工具一般会报告大量虚假警告以及实际警告。虽然基于规则的静态分析工具发现了许多隐藏的错误,但在报告的虚假警告数量中却丢失了这些工具。开发者花费了大量的时间和精力来识别真实警告。除了影响开发者生产力之外,真正的错误也会因这一挑战而被忽略。为了解决这一问题,我们提议了一个基于机器学习(ML)的学习程序,该程序使用源代码、历史承诺数据以及分类器-感应器,将真实警告与实际警告列表中的许多错误作为优先事项排列。虽然基于规则的静态分析工具发现了许多隐蔽的错误,但是这些工具却在报告数量上丢失了它们。我们从一个庞大的静态分析警告数据库中评估了我们在网络C代码上的方法。这些警告被开发者处理,将其标记标记为真实的错误或假警报。ML模型是经过全面监督而培训的,以全面监督来降低代码特性特性特性。我们的成果是保证静态分析报告。

0
下载
关闭预览

相关内容

这个新版本的工具会议系列恢复了从1989年到2012年的50个会议的传统。工具最初是“面向对象语言和系统的技术”,后来发展到包括软件技术的所有创新方面。今天许多最重要的软件概念都是在这里首次引入的。2019年TOOLS 50+1在俄罗斯喀山附近举行,以同样的创新精神、对所有与软件相关的事物的热情、科学稳健性和行业适用性的结合以及欢迎该领域所有趋势和社区的开放态度,延续了该系列。 官网链接:http://tools2019.innopolis.ru/
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
0+阅读 · 2021年6月11日
Arxiv
0+阅读 · 2021年3月7日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
Deep Randomized Ensembles for Metric Learning
Arxiv
5+阅读 · 2018年9月4日
VIP会员
相关VIP内容
相关资讯
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员