Optical imaging of genetically encoded calcium indicators is a powerful tool to record the activity of a large number of neurons simultaneously over a long period of time from freely behaving animals. However, determining the exact time at which a neuron spikes and estimating the underlying firing rate from calcium fluorescence data remains challenging, especially for calcium imaging data obtained from a longitudinal study. We propose a multi-trial time-varying $\ell_0$ penalized method to jointly detect spikes and estimate firing rates by robustly integrating evolving neural dynamics across trials. Our simulation study shows that the proposed method performs well in both spike detection and firing rate estimation. We demonstrate the usefulness of our method on calcium fluorescence trace data from two studies, with the first study showing differential firing rate functions between two behaviors and the second study showing evolving firing rate function across trials due to learning.
翻译:遗传编码钙指标的光学成像是一种强有力的工具,可以记录大量神经神经元在远离自由行为动物的很长一段时间内同时进行活动。然而,确定神经突飞猛进的确切时间和估计来自钙荧光数据的基本发热率仍然具有挑战性,特别是对于从纵向研究中获得的钙成像数据而言。我们建议采用多审判时间推移法,通过在试验中大力结合不断演变的神经动态,联合探测峰值和估计发火率。我们的模拟研究表明,拟议的方法在快速检测和发火率估计两方面都运作良好。我们从两项研究中展示了我们计算钙荧光痕量数据的方法的有用性,第一项研究表明了两种行为之间的不同发热率函数,第二项研究则显示由于学习而在不同试验中不断演变的发光率函数。