We introduce a new numerical method to compute resonances induced by localized defects in crystals. This method solves an integral equation in the defect region to compute analytic continuations of resolvents. Such an approach enables one to express the resonance in terms of a "resonance source", a function that is strictly localized within the defect region. The kernel of the integral equation, to be applied on such a source term, is the Green function of the perfect crystal, which we show can be computed efficiently by a complex deformation of the Brillouin zone, named Brillouin Complex Deformation (BCD), thereby extending to reciprocal space the concept of complex coordinate transformations.
翻译:我们引入了一种新的数字方法来计算晶体局部缺陷引起的共振。 这种方法解决了缺陷区域的一个整体方程式,以计算断层的连续分析。 这种方法使一个人能够用“ 共振源” 表达共振, 这个功能严格地在缺陷区域中本地化。 集成方程式的内核是完美晶体的绿色功能, 我们显示,可以通过称为布利尤因复合变形的布利柳因区(BCD)的复杂变形来有效计算, 从而将复杂的坐标变形概念扩大到对等空间。